Siirry sisältöön

Matematiikka:derivaatta

Tieteen termipankista

Tällä käsitteellä ei ole otsikon muodostavia nimityksiä.

derivaatta (luo nimityssivu)
Määritelmä funktion erotusosamäärän raja-arvo
Selite Funktion derivaatta pisteessä x0 kertoo funktion f kasvunopeuden pisteessä x0. Derivaattaa pisteessä x0 merkitään f(x0) tai dfdx(x0). Täsmällisesti derivaatta määritellään erotusosamäärän raja-arvona f'(x_0) = \lim_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}. Kaavaa \frac{f(x)-f(x_0)}{x-x_0} kutsutaan siis funktion f erotusosamääräksi pisteessä x0. Geometrisesti derivaatta pisteessä x0 voidaan ymmärtää funktion f kuvaajan tangentin kulmakertoimena pisteessä x0.

Erikieliset vastineet

derivativeenglanti (English)


Alaviitteet

Lähdeviittaus tähän sivuun:
Tieteen termipankki 5.12.2025: Matematiikka:derivaatta. (Tarkka osoite: https://tieteentermipankki.fi/wiki/Matematiikka:derivaatta.)